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Abstract: Wire ropes undergo a fretting fatigue condition when subjected to axial and bending loads.
The fretting behavior of wires are classified as line contact and trellis point of contact. The experimental
study on the fatigue of wire ropes indicates that most of the failure occurs due to high localized stresses
at trellis point of contact. A continuum damage mechanics approach was previously proposed to
estimate the fatigue life estimation of wire ropes. The approach majorly depends on the high value of
localized stresses as well as the micro-slippage occurs at the contact region. Finite element approach
has been used to study radial and axial distribution of stresses and displacement in order to clearly
understand the evolution of stresses and existence of relative displacements between neighboring
wires under various loading and frictional conditions. The relative movements of contacting wires
are more when friction is not considered. In the presence of friction, the relative movement occurs at
the boundaries of the contact region. The location of microslip in the presence of friction is backed by
the experimental observation stating the crack is initiated at or the outer boundary of the contact spot.
The existence of slip is due to different displacement of outer and central wires.

Keywords: finite element analysis; wire rope/strand; fretting fatigue; axial loading

1. Introduction

Steel wire ropes are used in many engineering applications like mooring lines of FPSO and
turbines, aerial rope ways, ski lifts, mine hoisting and lifting cranes [1,2]. They have capabilities to
withstand high axial load along with comparatively small bending and torsional loads. A wire rope
consists of several individual wires having different types of contacts with each other. Two classes
of interwire contact occur in a typical multi-layered spiral strand [3]. The first, which influences the
overall axial, torsional, and free bending stiffnesses, and governs the associated hysteresis values under
cyclic loading, is the contact within a given layer between adjacent ‘parallel’ wires. This is called the
line contact. This type of contact will influence not only the elastic properties but also the fatigue life.
Any fretting on the line contact will significantly reduce the fatigue life from that of the constituent
wires which is controlled by their surface finish and residual stresses. The other class of interwire
contacts often occurs between the layers of a spiral strand and is called the point contact or trellis
contact. Because they are localized, the contact stresses are much higher than on the line contacts
within a layer. These localized stresses affect the elastic, hysteretic and fatigue properties of wire ropes.
These contact points have received more attention by researchers [4–7] due to their major contribution
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in the failure of wire ropes. In many designs of wire ropes, this trellis contact is minimized by using
some lubricants between layers of wires. It has been observed that fracture occurs in these trellis
contacts during fatigue testing. Since the amplitude of fretting movement is small, partial slip occurs
and the crack is generated at or toward the edge of contact spots between wires. When the amplitude
becomes larger than fretting, wear and failure may occur due to a reduced cross-section and increased
stresses. Design against failure under tensile loading exceeding the MBL (maximum breaking load) is
already established [8]. Fretting fatigue life was estimated from the fretting fatigue data of individual
wires along with Finite Element analysis of wire ropes [9] using a stochastic approach. Fatigue design
of a wire rope under high cycle fatigue under fretting conditions have been investigated [2,10–12].
The data of fatigue life are based on available standard DNV OS-E301 (2004) and published literature
by researchers [13,14]. A continuum damage mechanics approach was proposed recently by [15] for
estimating fatigue life of wire rope. This approach is based on the Lemaitre model [16] for high cycle
fatigue. This is a two-scale model considering damage as micro-inclusion embedded in elastic matrix.
The drawn steel of wire rope under high cycle fatigue loading behave in quasi-brittle manner where the
behavior is brittle at the meso level and damage occurs at the microlevel. The damage starts to occur
from the trellis point of contact region where the contact stresses are high and micro slippage occurs at
the mating surfaces. In literature, there are not enough FE (Finite Element) studies which describe
the contact behavior of wires. D. Wang et al. [2] did stress analysis of three-layered wire strands.
The analysis was carried out for 1/6th pitch length of wire rope producing stress distribution as well
as relative displacement between neighboring wires. In addition to these analyses, Archard’s wear
law was used to predict depth of wear for different wires crossed at different angles. The results were
focused on fretting wear which occurred due to line contact between wires and which do not consider
the trellis point of contact between wires. Yu Yujie et al. [17] did an FE-based study on 1 × 7 strands
under longitudinal as well as lateral loads. The distribution of stresses and strains were studied in
both conditions and compared with each other. The wire strand model had outer wires touching each
other making line contact with each other in the beginning of loading and then, due to Poisson effect,
it reduced and the stress due to contact between core and outer wires in the lateral part of loading
increased. The sliding and frictional energies for longitudinal loading were described and analyzed for
the contacting nodes. Goran Vukelic and Goran Vizentin [18] used FE for studying possible remaining
service life of wire ropes. A single wire or strand is suppressed or deleted after certain cycles and von
Mises stresses were found out for the reduced cross-section of the wire rope. Using the Goodman
approach for finite fatigue, possible remaining service life was studied.

This paper describes the evolution of stresses at the localized region, radial and axial distribution
of the stresses and displacement at the neighboring surfaces of core and outer wires under different
contact conditions. The outer wires have no contact with each other; hence, the mechanism of contact
will be different compared with early FE studies. These studies were comparatively less focused on
the concentrated stresses due to spot contact between wires. Friction between the contacting wires is
another important factor effecting the fretting fatigue. Friction is unavoidable due to environmental
(sea and air etc.) effects, although lubricant and surface treatment is done [7] to minimize the friction.
The role of lubricants and grease existed in the initial cycles, but it faded away in the later life due
to high contact pressures between wires. This study will probably be helpful in understanding the
evolution of contact stresses, strains and interaction of individual wires (fretting) under axial loading
of one cycle having different surface conditions.

2. Materials and Methods

2.1. Geometry of Wire Rope

The wire rope strand 1 × 7 consists of one central and six outer wires. All the wires were made of
cold drawn steel. Wire rope strand is modeled using Finite Element commercial software ABAQUS
(6.12, Dassault Systemes, Johor, Malaysia). The central wire was modeled using a solid extrusion
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method and an outer wire was modeled with same extrusion method, but information of the pitch
length was given. The pitch length is important in defining the lay angle of outer wires around the
central wire. The pitch length of the existing strand was 230 mm, but the full length was 330 mm.
An additional length was provided to eliminate the end effects [6,19,20]. End effects were significant in
the strand terminals due to boundary condition which were not under consideration in the present
study. Length of any strand used for any application will be the multiple of many pitch lengths,
so a pitch length is considered as a unit of full length of strand. The interaction of wires under certain
axial loading will be nearly the same in any pitch length of the wire strand. Central and outer wires
were assembled in the Assembly module. The central wire diameter was 5.43 mm and outer wire
diameters are 5.23 mm.

2.2. Material Properties and Structural Mesh

All the wires of 1 × 7 strands were considered as isotropic and were homogenously made of drawn
steel. The chemical composition of the drawn wires was (in wt.%) 0.83C, 0.91Si, 0.717Mn, 0.0124P,
0.0031S, 0.015Cu, the remaining being Fe [15]. The modulus of elasticity was 202 GPa and Poisson’s
ratio is 0.28 [15,21]. In addition to the elastic information, stress–strain information after yielding was
also provided [21] and the wire strand was subjected to loading below 50% MBL but as the stresses
were more in the trellis point of contact region [5,6], plasticity could not be ignored. A hexahedral
mesh element C3D8R was employed for the discretization of the entire strand with a total number of
128260 elements and 160710 nodes shown in Figure 1. Each node has three degrees of freedom i.e., U1,
U2, U3 (translation in X, Y and Z directions).
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Figure 1. Wire Rope Strand Interaction, Boundary Conditions and detail of Mesh.

2.3. Interaction Properties and Boundary Conditions

The interaction of wires was defined in the interaction module of ABAQUS. The contact pairs
were automatically identified, and a master–slave algorithm was employed between the contact pairs
with finite sliding slip mode enforced at the contact constraints. For the frictionless contact cases, only
normal contact (hard) behavior was defined but for the friction cases the tangential contact properties
were defined by applying penalty algorithm with a coefficient of friction of 0.1 and 0.2. the values of
coefficient of friction are selected to show the effects on the local stresses and relative displacements at
the contact due to existence of friction. Two reference points “Fixed End” and “Loading End” shown
in Figure 1 were defined along centerline of central wire away from the strand cross section on both
the front and back side. Kinematic coupling was employed between these reference points and the
surface nodes on the cross section of strands. The coupling nodes are constrained with all degree of
freedom. One reference point (Fixed end) is fixed by restricting all degrees of freedom and load is
applied at other reference point (Loading end) in U3 (Z axis) direction. Loading is applied in three
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steps. In first step ramp loading is applied upto minimum load, then single cycle is applied keeping
the R ratio equal to 0.1. Maximum load value of 80 kN, 120 kN and 145 kN is applied.

3. Results

3.1. Stress Distribution under Different Amplitude of Cyclic Loading

When cycling load was applied on wire rope strand with R = 0.1, stresses ranged from minimum
to maximum values. Stresses in the central wire were higher as compared to outer wires due to
difference in length. The wires which are helically wrapped around are higher in length and result in
less value of stress and larger value of displacement. The average value of stress in any layer of wire
rope strand can be found mathematically according to [22],

σtk =

cos2 αk
1+υk sin2 αk

Ek∑n
i=0

(
zi cos3 αi

1+υi sin2 αi
EiAi

)S (1)

where index i stands for the individual wire and k for the layers; A is the cross-sectional area of the
wire, E is the modulus of elasticity, υ is Poisson’s ratio, k is the lay angle, z is the number of wires in
the layer, n is the number of wire layers and S is the tensile force.

As the drawn steel wire is not flexible enough to wrap completely around the central wire, there
were certain points and regions which came under spot contact. This contact is not uniform and
continuous due which stresses are comparatively high in some regions [4,7] and result in localized
stress concentrations. This kind of contact was called the trellis point of contact, having a significant
role under fretting fatigue conditions. The trellis point of contact was observed in different kinds of
rope design and under different types of loadings (axial, bending, torsion and mix loading). Figure 2
shows the distribution of von Mises stresses at 80 kN load extracted at peak load occurring at the
central section of a strand. Sections from the central region of strand were selected to avoid the terminal
effects due to boundary conditions. The central wire was comparatively high stressed as compare to
surrounding wires due to difference in length of the wires. The stresses in the central wire were not
homogenously distributed due to high localized stresses in some regions. Radial distribution of von
Mises stresses is shown in Figure 3a for all the three loadings and frictionless and friction cases. Results
were extracted at the peak value of loading for the path defined at cross sectional area in the middle
region of wire rope. This path starts from the center of core wire (CW) towards the outer wire (OW)
passing through the contact point of the two wires. The trends are almost the same in all cases with
maximum values at the surface of the central wire having a radius of 2715 mm; they then suddenly
jumped down to certain lower values and then gradually decreased. More detailed insight of theses
stresses at the contact region can be seen in Figure 3b,c which are plot against the true distance along
the strand. Results are extracted for one pitch length of strand chopping 50 mm sections at each end.
These results were extracted at the peak load of one cycle.

Von Mises stresses are maximum in the central wire; the neighboring wires in both the frictional
and frictionless cases as indicated in Figure 3. In the frictionless case the von Mises, stress is more
uneven on the surface path. There are some randomly occurring peaks showing trellis localized stresses.
In case of friction, the overall trend is constant with randomly occurring peaks, showing localized
stresses. The friction has very low impact on the stress distribution of neighboring wires as indicated.
The trend and distribution of peaks are almost the same as in the frictionless cases for all three types of
loading. Results having friction coefficient values of 0.1 and 0.2 are almost the same with no significant
differences. It is important to note that none of the values of von Mises stress exceed the values of yield
stress [15] of the drawn steel wire. It means that loading below 50% MBL will cause no plasticity in the
localized region. Considering the High Cycle Fatigue in which metals fails like quasi-brittle material,
a ductile may undergo brittle failure if the material is subjected to low level of stresses causing elastic
behavior at the meso-level. At the micro level, plasticity may occur [15,16] and will initiate damage in
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the subsequent cycle. In the absence of friction, neighboring wires tend to slip with each other which
will be discussed in the following section. The friction which may be due environmental effects or
other reasons (during manufacturing) resists the slippage of neighboring wires. If the frictional effects
are increasing, the phenomena will change from fretting fatigue to fretting wear.
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Figure 2. Von Mises and Max Principal stress distribution in wire rope strand under axial loading for
different surface conditions (a) Von Mises stress distribution without friction. (b) Von Mises stress
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Figure 3. (a) Radial Distribution of von Mises Stress at mid-section of wire rope subjected to different
axial loads (b) Von Mises along the axis of rope on the surface of core wire (CW) and outer wire (OW) in
absence of friction. (c) Von Mises along the axis of rope on the surface of core wire (CW) and outer wire
(OW) in presence of friction with coefficient of friction = 0.1. (d) Von Mises along the axis of rope on the
surface of core wire (CW) and outer wire (OW) in presence of friction with coefficient of friction = 0.2.

3.2. Relative Displacement of Central and Outer Wires

In the previous section the effect of different magnitude of loadings and surface roughness on
distribution of von Mises stresses were discussed. It was revealed that results for frictionless case
were different from the friction cases. Further increasing the friction from 0.1 to 0.2 did not cause
significant effects on the results. Outer wires (OW) are helically wrapped around the central wire
due to which stresses are not uniformly distributed across the cross-section of a strand. Fretting
regions were further investigated by looking at the results of displacements. The contours of total
displacement (U, magnitude) and axial displacements (U3) are shown in Figure 4 for 80 kN load.
Contours of total displacement show variations in values for central and outer wires; however, no such
variation has been noted for distribution of axial displacement. Since the total displacement shows
some variations, it is further illustrated using radial distribution of total displacement for 80, 120 and
145 kN, as shown in Figure 5a. The radial path defined for this purpose is the same as illustrated in
Section 3.1. The displacement of wire nodes is minimal at the center and increases radially. In the
presence of friction, the displacement is continuous due to the sticking effect of the outer wire with
a central wire. A sharp discontinuity can be seen in the frictionless cases at the boundary of neighboring
wires, which is the result of relative slipping of mutually contacted wires.
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Looking into the details of this relative slipping, the value of total displacements are drawn on the
axial path at the contact of the wires as shown in Figure 5. Figure 5b illustrates the displacement of core
and outer wires (OW) in the absence of friction. The displacement curves are not exactly overlapping,
hence, showing some relative displacement of both the core and outer wires. It is worth mentioning
that the axial displacement, as shown in Figure 5c, illustrates no significance difference between the
core and outer wires. This shows that the relative displacement may be due to the untwisting effect
of strands when axial force is applied at both ends. In case of friction, for the 80 kN load case, the
displacement of the outer wires is more than the core wire, but at larger loads, this difference further
decreases as illustrated in Figure 5c. Due to friction at the contact region slipping and being resisted,
both the neighboring wires stick to each other. This slipping and sticking is shown in Figure 6. In case
of frictionless contact, there is no sticking which means no shear traction, but in case of friction, sticking
occurs at all the loads. The slipping region reduces and shrinks at the boundaries of the contact region
which means that both sticking and slipping occurs when the surfaces are rough enough to induce
friction. This finding is according to previous experimental investigation [6,7,23]. The slipping (green)



Materials 2019, 12, 3463 8 of 12

is less, as can be seen in Figure 6b, as compared to sticking (red) region. Figure 6b reveals the fact that
in case of friction, partial slipping occurs at the contact region and the existence of fretting cannot
be eliminated.Materials 2019, 12, 3463 8 of 12 
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Figure 5. (a) Variation in Total Displacement along radial path at mid section of wire rope under
different axial load and different surface conditions (b) Variation in Total Displacement in core and outer
wire (OW)along the axis of wire rope under different axial loads in absence of friction (c) Variation in
Total Displacement in core (CW) and outer wire (OW) along the axis of wire rope under different axial
loads having coefficient of friction = 0.1. (d) Variation in Total Displacement in core (CW) and outer
wire (OW) along the axis of wire rope under different axial loads having coefficient of friction = 0.2.
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3.3. Stresses at Contact Points

In the preceding sections, radial and axial distribution of von Mises stresses were discussed along
with distribution of axial displacement and total displacements of wires for all cases. In the current
section, evolution of stresses at the contact points are discussed. The contact stresses and von Mises
stresses were plotted for the adjacent nodes of the central core and outer wires. These nodes are shown
in Figure 7.
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Figure 7. (a) Contact Nodes on Core Wire (b) Contact Nodes on Outer Wire.

These nodes are taken as samples from the central region of the wire rope strand to eliminate
the end effects on the strand. The other spots where contact exists can be clearly observed in these
Figures. The central core wire (CW) and outer wires (OW) are chopped near these nodes to show their
exact location. The evolution of contact stresses CPRESS are shown in Figure 8 for 80 kN maximum
load for both frictionless and friction cases. The evolution of the contact stress at a localized region
in the frictionless case is more uneven as compared to the frictional case. The shape of contact stress
does not exactly follow the shape of applied loading due to gross slipping behavior of the adjacent
nodes. The load with R ratio of 0.1 is maintained on the strand ends. In the frictional cases, both the
adjacent nodes have an exact shape due to sticking behavior. Fretting does exist in the frictional cases
as previously discussed at the boundaries of contact areas. The distribution of von Mises stress at the
core nodes is also shown for illustration purposes in Figure 8b.
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The shape of von Mises stresses resembles the applied loading for all loading cases. The frictionless
case for 80 kN load as shown in Figure 8 and is more fluctuating as compared to the frictional cases,
clearly showing the gross relative slipping behavior of the nodes. The sticking behaviors in the
frictional cases make it a smoother curve. At larger loads of 120 kN, von Mises stresses are relatively
smooth, having a similar shape and trend. The peak value of von Mises is larger for the frictionless
case as compared to the frictional case. This behavior shows that the magnitude of the applied load
affect the evolution of stresses. Further investigating the von Mises stress at 145 kN load, the shape of
the distribution is the same but not very well continuous. The small fluctuation in the stresses may
be due to the increase in the slipping behavior at larger loads. All these results show that slipping
behavior changes when the amount of loading and the condition of the mating surface change.

4. Discussion

Stress distribution among the wires of 1 × 7 strands, its displacement distribution and
contact stresses were studied in this paper. Stress distribution in the wires validate the analytical
Equation (1) [22] showing high values of stress in the core wire as compared to outer wires. These
stress distributions were shown in Figures 2 and 3. The peaks in the axial distribution of von Mises
stress were due to localized stresses. These localized stresses were previously observed in experimental
work by [23,24] and were considered as the reason of failure of wire ropes. It was observed in these
studies that fretting fatigue occurs at the interlayer contact spots in multilayer wire ropes. However,
in our present work, a wire rope strand is used (with only one layer). The confirmation of the fretting
phenomenon was the primary focus in this study before implementing the methodology proposed by
Ahmad et al. [15]. As indicated earlier, the outer wires do not contact each other, resulting in high
value of stress at different contact points between the core and outer wires. Earlier FE studies [2,17]
ignored these contact spots and primarily focused on line contact between wires resulting in a gross
slip between wires confirming the fretting wear phenomenon. The other parameter which is necessary
for the fretting phenomenon is the relative movement between contacting wires. This paper describes
that slippage is maximum for the frictionless case and decreases when friction increases as indicated
in Section 3.2. The relative displacement in the axial direction is negligible but the resultant vale of
displacement shows some differences indicating some twisting behavior of helical wires. The contact
spots are clearly shown in contours of CPRESS resembling the contact spots shown in morphologies
reported by [7].

Morphologies of damage portions of a wire reported by [7] clearly validate the FE study showing
the contact spots. The cracks are initiated at the boundaries of contact spots due to micro-slippage
occurring between neighboring wires. Cracks are a confirmation of the fretting phenomenon contrary
to wear in which material is removed at the contact spot resulting in failure of wire due to reduced
cross-sections. At the beginning of loading friction, the value of wires is usually less [25] but increases
with the passage of cycles deteriorating the surface. In the high cycle of fatigue amplitude, loading
is very small and results in very small relative movement between wires. The values of maximum
von Mises stresses were sinusoidally increased with the passage of an increase in loading. Maximum
values are noted at the peak of loading cycles at these contact spots for different loads. It has been
observed that von Mises stress values are below the yield stress at 50% MBL validating the domain of
high cycle fatigue.

5. Conclusions

1. It was concluded from the numerical investigation of wire rope strands, that at low levels (below
50 Percent MBL) of stress, yielding does not occur at any point in the strand. The maximum value
of the von Mises stress is 1554 MPa which is 91 Percent of the yield strength. Elastic behavior of
the material shows that the HCF study of the wire rope strands is valid at these values of stresses.

2. The shape of the von Mises stresses and the contact stress evolution during loading of one cycle
are in phase with the applied loading at the localized contact regions.
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3. Relative displacement between the contacting wires is more in frictionless conditions. For friction,
case relative displacement has been observed at lower loads of 80kN, however, changing the
friction coefficient from 0.1 to 0.2 did not alter the results.

4. It has been evident from the present study that fluctuation in stresses are more for 80 kN and
145 kN as compared to 120 kN for mutually contacted nodes. This fluctuation in stress changes is
due to the sliding behavior of neighboring wires.

5. At larger axial loads, the normal contact stress values are more for the frictionless case as compared
to friction.

6. The existence of the slippage at the boundaries of contacting spots in the presence of friction
confirms the fretting phenomena backed by previous experimental studies stating that the cracks
tend to nucleate at a spot or at the outer edge of contact spots.
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